

China Lake, Ca

Outline

- Overview
- Background
 - APG-79 Basics
 - Performance
 - Schedule
- Risk Management- Others
- Risk Management- Goods
- Summary
- Questions

This Briefing is Classified UNCLASSIFIED

Overview

Overview

More Lethal...

- Engages targets at very long ranges
- Tracks twice as many targets as the APG-73 radar
- High resolution SAR maps at long stand-off ranges
- Interleaved multi-mode operation

More Survivable...

- Controlled radar cross section
- Improved Situational Awareness

More Affordable...

- Procurement cost comparable to APG-73
- Low maintenance cost
 - The average array will not need to be replaced during its lifetime

The F/A-18E/F AESA radar is a quantum leap in sensor technology for unequaled air combat capability

APG-79 Basics

Main Elements of the AESA Upgrade

Electrical Partitioning

High Speed Data Network

Integrated Forebody/ NT Technology

AN/APG-79 Radar

Engine Integration

Liquid Cooling System Upgrade

Wideband Radome with Guard Antenna

ECP 6038R1 Forward Fuselage

- ✓ Milestone II Approval / EMD Contract Awarded on Schedule
- ✓ EMD Program Ramp-up Successfully Accomplished
- ✓ All Radar Subsystem Hardware Internal CDRs Completed
- ✓ All Aircraft Subsystem CDRs Completed
- Rapid Prototyping used Extensively to Reduce Program Risk
- Commenced EMD Test Hardware Deliveries
- ✓ Production Equivalent Radar STE / Subsystem Laboratories are in Place
- ✓ Weapon System Software SDRs Completed
- Radar CDR Successfully Completed
- Weapon System CDR Successfully Completed
- ✓ Commenced Radar Hardware/Software Integration on Schedule

MSA

AESA

APG-73 Radar

Mechanica **I** Scan **Antenna**

Transmitter

Power Supply Unit

Receiver/Exciter

Radar Data Process

(1) Observed Field Data (2) Estimated Field Reliability

			C		
	70(1)	115(1)	1,100%	1,280 ⁽²) (E
					Part and
	315	615			It
	224	322	14,100%		d d
	638	3,294	140%	4,885	
8465	255	347	1,000%	3,511	C
-5035	737	1,578	350%	5,566	90%

Mean Time Between Critical Failure

ESA Multi Function Radar

lar Power Supply Unit

ceiver/Exciter (REX)

Common Integrated

Sensor Processor/ Beam Steering

MSA Track While Scan (TWS)

- Fixed scan rate
- Track updates occur when beam returns to target during scan
- No track of targets outside scan volume

Air to Air Capabilities

Performance

Reduced RCS and Increased Detection Range Provide Significant Operational Advantage

Reduced Detection by SAM Radars

Better Map's at Longer Ranges

Schedule

Background

- FA-18E/F Super Hornet Block II (Lot 27) includes APG-79 radar upgrade
- Validation of Block II design used an extensively modified Lot 23
- Modification included major changes to the ECS, fuel system, electrical power distribution system, mission computers, and cockpit displays
- Ground test procedures were established as part of the Block II AESA Flight Test Plan
- Test Hazard Analysis addressed perceived risks associated with ground and flight test
 - FOD "walkdown"
 - Exterior Inspection

Events

- During first high power turn, substantial damage occurred to one engine
- Further investigation revealed a metal fastener was inadvertently left in the ECS ducting during the aircraft modification

Lessons Learned

- Review of FA-18E/F aircraft EMD ground testing revealed that "internal FOD" damaged several engines early in the effort
- FA-18E/F aircraft EMD ground testing subsequently adopted a thorough Safety Checklist that included internal FOD checks and reduced FOD damage to zero
- Block II AESA test plan did not include a thorough review of the Safety Checklist of the FA-18E/F aircraft ground test plan
- Failure to properly absorb lessons learned from previous test plans/tests

Background

- High risk flight test points were identified prior to first flight
- Simulator rehearsal within 14 days was required to perform the flight
- Simulator facility was more than 200 miles from the test airfield
- Consequently the aircraft experienced a series of aircraft discrepancies that delayed the first flight
- Simulator currency was overdue
- Significant pressure was placed upon the test team to conduct first flight

Events

- A waiver of simulator rehearsal was proposed to the test team
- Despite significant pressures, the test team elected to delay first flight to facilitate the simulator requirement
- During first flight, a mechanical failure within the ECS allowed bleed air to leak into the engine bay
- Test aircrew had rehearsed this specific emergency the day prior and recovered the jet safely without any further problems

Lessons Learned

 Value of sound decision making in the test planning process and the importance of honoring the process despite perceived pressure to execute

Summary

Summary

- Methodical test planning to include lessons learned from previous like tests is essential for the safe execution of any test
- Perceived or unperceived pressures "to get the test point" or "get the x" has no place in the flight test environment
- A detailed "safety first" approach from the test team will enable the AESA radar to be integrated into the FA-18E/ F Super Hornet and deliver tremendous capability to the warfighter

Questions

Backups

H/W + S/W Isolation Lay@bsolescence Resistant Architecture

Better Coverage and Reduced Assets with Improved Multi-Target Tracking

AESA's RF Coverage for Active and Passive Operations

RF (GHz)

* Note: All Functions are not Ba

AESA Bandwidth Covers High Interest Threats

Maintenance Position, Rack Extended

New Controls and Displays

Az/El Field of Regard Limitations

Aircraft Attitude of -20° Pitch, -20° Roll

Aircraft Attitude of +40° Pitch, +40° Roll

A/G Patch Map Presentation

A/A Mode Selection

Characteristic (ORD)	ORD	Status		Margin	
Air to air		Prod.	EDM	Prod.	EDM
Multiple target track		1 100.	25	1100.	
Detection/track range for 11th target	100%	118%	116%	18%	16%
Air to surface					
SAR Imagery - Expand 6					
•Range for ≤ X ft resolution @ 30° squint angle	100%	109%		9%	
SAR TLE with Existing CAINS II/MAGR System (KPP A)	<100%	89%		11%	
SAR TLE with Accurate Navigation System (KPP B)	<100%	89%		11%	
Mode interleaving					
Make SAR map @ X NM while maintaining track of four targets	<100%	62	2%	38	3%
Interoperability (AMRAAM)	Critical IERs	All I	ERs	Y	es
Operational Availability	95%	98	3.1%	3.	1%

Technical Performance Measures

Characteristic	Threshold	Status	Margin	
Maintainability (MMH/FH)	0.0075	0.00345	54%	
Reliability MTBF - radar only	917	818	30%	
AESA weight increment (includes ECP 6038)	420 lbs	303 lb (Prod) 308 lb (EDM)	28% 27%	
Power	21 KVA	18 KVA (Prod) 17.9 KVA (EDM)	14% 14.7%	
Liquid cooling	15.6 kW	14.76 kW (Prod) 15.02 kW (EDM)	5.4% 3.7%	